
An experiment with denotational semantics
(reversing the traditional order of things)

Presentation and book (PL & GB) on
http://www.moznainaczej.com.pl/inzynieria-denotacyjna

http://www.moznainaczej.com.pl/denotational-engineering

Andrzej Blikle
in cooperation with Piotr Chrząstowski-Wachtel

March 8th, 2019

© Copyright by Andrzej Blikle.

"An experiment with denotational semantics” by Andrzej Blikle is licensed under a Creative Commons:
Attribution — NonCommercial — NoDerivatives.

http://www.moznainaczej.com.pl/inzynieria-denotacyjna
http://www.moznainaczej.com.pl/denotational-engineering

March 8th 2019 2A. Blikle - An experiment with denotational semantics

The philosophy
of the method

What I am trying to do?

March 8th 2019 3A. Blikle - An experiment with denotational semantics

THE QUALITY OF A PROGRAM:
1. the compliance of that prog.-specification with user’s

expectations
2. the compliance of that prog. with its specifications

Currently for Pascal-like languages (no concurrency).
That was my research area in the years 1970-1990.

To suggest a way of improving the quality of programs.

Why I dare to tacle the problem?

March 8th 2019 4A. Blikle - An experiment with denotational semantics

An example of a disclosure There is no warranty for the program, to the
extent permitted by applicable law. Except when otherwise stated in writing the
copyright holders and/or other parties provide the program "as is" without
warranty of any kind, either expressed or implied, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. The
entire risk as to the quality and performance of the program is with you.
Should the program prove defective, you assume the cost of all necessary
servicing, repair or correction.

The KeY Book; From Theory to Practice (Springer 2016)
For a long time, the term formal verification was almost synonymous with
functional verification. In the last years, it became more and more clear that
full functional verification is an elusive goal for almost all
application scenarios. (…) Not verification but specification is the real
bottleneck in functional verification.

The state of the art in IT industry

The state of the art. in IT science

Why earlier attempts failed?
(although some experiments are still in the course)

March 8th 2019 5A. Blikle - An experiment with denotational semantics

In order to build a logic of programs
a mathematical semantics must be defined.

Two historical attempts to the definitions of mathematical
semantics:

An operational semantics (VDL);
describe a virtual computer

Denotational semantics (VDM)
S : Language → Denotations
S(P⧫Q) = S(P) ● S(Q)

S : AlgSyn → AlgDen

SEMANTICS
A homomorphism
of many-sorter algebras

Ada and Chill, 1980.

Can a denotational semantics be written
for any language?

March 8th 2019 6A. Blikle - An experiment with denotational semantics

My hypothesis
Probably not – at least not for the languages that I know.

First syntax:
how to talk about

Then denotations
what to talk about

A traditional approach to building denotational semantics

This order has a historical justification. When people started to
think about semantics the syntaxes were already there.

And certainly this hasn't been done so far.

Let’s reverse
the usual order of things

March 8th 2019 7A. Blikle - An experiment with denotational semantics

First describe the world of denotation: an algebra of the
denotations of programs’ components.

Then derive from it the corresponding syntax

the algebra of
syntax

the algebra of
denotations

denotational
semantics

half
algorithmic

CREATION

creation

a
lg

o
ri
th

m

When we have a languages with
denotational semantics,

we can think about proving programs correct.

March 8th 2019 8A. Blikle - An experiment with denotational semantics

Is proving programs correct
a right way

to validate programs?

Two problems:
1. A proof is usually longer then a theorem.
2. Programs are usually incorrect.

Let’s reverse
the usual order again

March 8th 2019 9A. Blikle - An experiment with denotational semantics

A mathematician
First a theorem, then a proof

An engineer
First a project (proof), then a product (e.g. a bridge)

Proof rules should be replaced by
sound program-construction rules

Validating programming

March 8th 2019 10A. Blikle - An experiment with denotational semantics

The general idea
of a denotational model

These ideas have been published in my papers
in the years 1971 – 1989

(some with Antoni Mazurkiewicz and Andrzej Tarlecki)

MATHEMATICAL TOOLS
• fixed-point theory in CPO’s
• set-theoretic domain equations (no Scott’s reflexive domains)
• three-valued predicate calculus
• many-sorter algebras
• abstract errors for error-handling mechanizm

March 8th 2019 11A. Blikle - An experiment with denotational semantics

An example of
a many-sorted algebra

TWO SORTS OF THE ELEMENTS OF THE ALGEBRA:
• numbers, e.g. real numbers
• Boolean values

A denotational model
of a programming language

March 8th 2019 12A. Blikle - An experiment with denotational semantics

Algebra of
denotations

Algebra of
abstract syntax

Algebra of
concrete syntax

algorythmcreation

an unambiguous
grammar of
parsing trees

an ambiguous
grammar of
programs

As

S = Co-1 ● As

If Co glues not more than As, then the (unique) homomorphism S exists.

Co

creation

A toy example,
part 1

March 8th 2019 13A. Blikle - An experiment with denotational semantics

The algebra (grammar) of abstract syntax
Ide = {x, y, z,…}
Exp = var(Ide) | plus(Exp, Exp) | times(Exp, Exp)
Ins = assign(Ide, Exp) | compose(Ins, Ins)

Carriers An algebra of denotations
Ide = {x, y, z,…}
ExpDen = State → Number
InsDen = State → State
Constructors
var : Ide ⟼ ExpDen
plus : ExpDen x ExpDen ⟼ ExpDen
times : ExpDen x ExpDen ⟼ ExpDen
assign : Ide x ExpDen ⟼ InsDen
compose : InsDen x InsDen ⟼ InsDen

The semantics of abstract syntax (As)
Sid : Ide ⟼ Ide (identity)
Sex : Exp ⟼ ExpDen
Sin : Ins ⟼ InsDen

State = Ide ⟹ Number Notation:
A → B; partial fun.
A ⟼ B; total fun.
A ⟹ B; finite fun.

ALGORITHM

ALGORITHM

March 8th 2019 14A. Blikle - An experiment with denotational semantics

The algebra (grammar) of abstract syntax
Ide = {x, y, z}
Exp = var(Ide) | plus(Exp, Exp) | times(Exp, Exp)
Ins = assign(Ide, Exp) | compose(Ins, Ins)

The algebra (grammar) of concrete syntax
Ide = {x, y, z}
Exp = Ide | (Exp + Exp) | (Exp * Exp)
Ins = Ide := Exp | Ins ; Ins

The algebra (grammar) of colloquial syntax
Ide = {x, y, z}
Exp = Ide | (Exp + Exp) | (Exp * Exp)

Exp + Exp | Exp * Exp
Ins = Ide := Exp | Ins ; Ins

There is no denotational semantics for colloquial
syntax! not acceptable ambiguity

CREATION
assisted

CREATION
assisted

acceptable ambiguity

A toy example,
part 2

A model with a colloquial syntax

March 8th 2019 15A. Blikle - An experiment with denotational semantics

Reachable
part

Algebra
of abstract syntax

Algebra
of concrete syntax

algorythmcreation

AsCo

S = Co-1 ● As

Colloquial
syntax

a restoring transformation
(is not a homomorphism)

The algebras of
syntax are
reachable by def.

the algebra of
denotations

March 8th 2019 16A. Blikle - An experiment with denotational semantics

Lingua – an example languages
where to explain selected applications of the model

❑ Booleans, numbers, words, lists, arrays, record and their arbitrary
combinations plus SQL data-bases

❑ three-valued propositional calculus for Boolean expressions
❑ abstract errors incorporated into the algebras of denotations
❑ user-defined structured types,
❑ basic programming constructors (:=, if-then-else-fi, while-do-od)
❑ procedures with recursion and multirecursion
❑ sound program-constructors based on Hoare’s logic with clean

termination (three-valued predicate calculus)

not covered in this presentation

March 8th 2019 17A. Blikle - An experiment with denotational semantics

Data and their domain equations

ide : Identifier = …

GENERAL

boo : Boolean = {tt, ff}
num : Number = …
wor : Word = {‘}Alphabet*{‘}
lis : List = Datac*

arr : Array = Number ⟹ Data
rec : Record = Identifier ⟹ Data
dat : Data = Boolean | Number | Word | List | Array | Record

SQL

dat : SimData = Boolean | Number | Word | Date | Time … | {θ}
row : Row = Identifier ⟹ SimData
tab : Table = Rowc*

an empty field
of a table

Domain equations define
larger sets of data
than their future
reachable parts.

No abstract errors
at this stage!

March 8th 2019 18A. Blikle - An experiment with denotational semantics

Bodies and composites

GENERAL
bod : Body = {('Boolean'), ('number'), ('word')} |

{‘L’} x Body | (list bodies)
{‘A’} x Body | (array bodies)
{‘R’} x (Identifier ⟹ Body) (record bodies)

SQL
sbo : SimBody = {(‘Boolean’), ('number’), (‘word’), (‘date’),…}
bod : RowBody = {‘Rq’} x (Identifier ⟹ SimBody)
bod : TabBody = {‘Tq’} x Row x (Identifier ⟹ SimBody)

com : Composite = {(dat, bod) | dat : CLAN-bo.bod}
com : BooComposite = {(boo, ('Boolean’)) | boo : {tt, ff} }
com : CompositeE = Composite | Error
com : BooCompositeE = BooComposite | Error

a common body
of all the elements
of a list/array

CLAN-bo : Body ⟼ Set.Data
CLAN-bo.('number’) = Number
CLAN-bo.('L', ('number')) = Numberc*

errors are words (messages)

March 8th 2019 19A. Blikle - An experiment with denotational semantics

Transfers and yokes

tra : Transfer = CompositeE ⟼ CompositeE
yok : Yoke = CompositeE ⟼ BooCompositeE

EXAMPLES OF TRANSFER EXPRESSIONS

record.salary - if the argument carries a record with attribute
'salary', then the associated data and body
otherwise error message, e.g., 'record-expected'

record.salary + record.bonus

record.salary + record.bonus < 7000 - a yoke of records
all-list (record.salary + record.bonus < 7000) - a yoke of lists of rec.
SMALLINT - a SQL yoke of numbers
DECIMAL(p,s) - a SQL yoke of numbers

Yokes describe
properties of
composites

In Lingua-SQL yokes describe integrity constraints except the
subordination relations between tables. The latter are described in a
different way.

March 8th 2019 20A. Blikle - An experiment with denotational semantics

Types and values

typ : Type = Body x Yoke
typ : TypeE = Type | Error

val : Value = {(dat, (bod, yok)) |
dat : CLAN-bo.bod &
(dat, bod).yok = (tt, ('Boolean')) }

values are assigned to identifiers in states

types are assigned to identifiers in states and
are the results of type-expression evaluations

composites are the results of data-expression evaluations

Types are storable in states, but composites and transfers are not.
This is an engineering decision rather than a mathematical neccessity.

March 8th 2019 21A. Blikle - An experiment with denotational semantics

States and denotations
STATES
sta : State = Env x Store
sto : Store = Valuation x (Error | {'OK'})
vat : Valuation = Identifier ⟹ Value
env : Env = ProEnv x TypEnv
tye : TypEnv = Identifier ⟹ Type
pre : ProEnv = Identifier ⟹ Procedure
pro : Procedure = ImpPro | FunPro
ipr : ImpPro = ActPar x ActPar ⟼ Store → Store
fpr : FunPro = ActPar ⟼ State → Composite | Error
apa : ActPar = Identifierc*

DENOTATIONS
ded : DatExpDen = State → CompositeE
ted : TypExpDen = State ⟼ TypeE
tra : TraExpDen = Transfer
vdd : VarDecDen = State ⟼ State
tdd : TypDefDen = State ⟼ State
pdd : ProDecDen = State ⟼ State
ind : InsDen = State → State

selected carriers
of the algebra
of denotations

to avoid
selfapplicability

March 8th 2019 22A. Blikle - An experiment with denotational semantics

The constructors of denotations
(a few examples)

dat-variable : Identifier ⟼ DatExpDen
typ-constant : Identifier ⟼ TypExpDen
dat-plus : DatExpDen x DatExpDen ⟼ DatExpDen
typ-plus : TypExpDen x TypExpDen ⟼ TypExpDen
call-fun-pro : Identifier x ActPar ⟼ DatExpDen
assign : Identifier x DatExpDen ⟼ InsDen
while : DatExpDen x InsDen ⟼ InsDen

dat-variable.ide.sta =
is-error.sta  error.sta

let
(env, (vat, ‘OK’)) = sta

vat.ide = ?  ‘undeclared-variable’

let
((dat, bod), yok) = vat.ide

dat = Ω  ‘uninitialized-variable’
true  (dat, bod)

An example of a constructor definition

March 8th 2019 23A. Blikle - An experiment with denotational semantics

Lingua-SQL
from bird's-eye view

March 8th 2019 24A. Blikle - An experiment with denotational semantics

SQL BODIES
sbo : SimBody = {(‘Boolean’), ('number’), (‘word’), (‘date’),…}
bod : RowBody = {‘Rq’} x (Identifier ⟹ SimBody)
bod : TabBody = {‘Tq’} x Row x (Identifier ⟹ SimBody)

SQL YOKES
record.salary + record.bonus < 10.000
SMALLINT
DECIMAL(p,s)

In Lingua we already have
(to refresh the memory)

SQL VALUES
RowVal = {(row, bod), tra) | …}
TabVal = {(tab, bod), tra) | …}

March 8th 2019 25A. Blikle - An experiment with denotational semantics

Adding: subordination graphs
and data-base values

dbr : DatBasRec = Identifier ⟹ TabVal - data-base record
dbv : DbaVal = {(dbr, sgr) | dbr satisfies sgr} - data-base value

sgr : SubGra = Sub.(Identifier x Identifier x Identifier)

child column parent

Data-base values are assigned to identifiers in states.

In order to operate on a data-base, it has to be activated. This
means that in the current state:
▪ its tables are assigned to identifiers,
▪ its subordination graph is assigned to a system-identifier

'sb-graph'.

March 8th 2019 26A. Blikle - An experiment with denotational semantics

A colloquial SQL declaration
of a table variable

create table Employees with

Name Varchar(20) NOT NULL,

Salary Number(5) DEFAULT 0,

Bonus Number(4) DEFAULT 0,

Dep_Id Number(3) REFERENCES Departments,

CHECK (Bonus < Salary)

ed

CONCRETE-SYNTAX SCHEME

create table Employees as

table-type dat_exp with yok_exp ee

ed;

set reference of Employees at Dep_Id to Departments ei

the row of
default values

yoke

concrete syntax of an instruction that sets
a subordination relations of tables

March 8th 2019 27A. Blikle - An experiment with denotational semantics

A further restoration
create table Employees as

table-type dat_exp with yok_exp ee

ed;

create table Employees as

table-type

expand-row

expand-row

expand-row

row Name val empty-word ee

by Salary val 0 ee

by Bonus val 0 ee

by Dep_Id by empty-number ee

with

all

varchar(20)(row.Name) and

…

row.Bonus < row.Salary

dat_exp

yok_exp

March 8th 2019 28A. Blikle - An experiment with denotational semantics

Examples of research problems
Theory and software engineering:
▪ models for script languages, e.g.: HTML, TEX,…
▪ models for concurrency (a rather hard problem),
▪ a full system of sound program-construction rules,
▪ full models for Lingua-like languages
Supporting tools for language designers:
▪ a generator of abstr. syntax from the def. of algebra of den.,
▪ a dialog-generator of concrete syntax,
▪ a support for the creation of colloquial syntax and the restoring

transformation,
▪ a support for the generation of semantic clauses.
Supporting tools for programmers:
▪ implementations of Lingua-like languages
▪ program editors supporting correct-program development.
Experimental applications, e.g. in microprogramming.

March 8th 2019 29A. Blikle - An experiment with denotational semantics

THANK YOU FOR
YOUR ATTENTION

